

THE

MOLE

Answer all the questions below.

1. What is the relative atomic mass $\left(A_{r}\right)$ of carbon?
a) 6
b) 12
c) 14
d) 16
2. Avogadro's number is:
a) 6.022×10^{22}
b) 6.022×10^{23}
c) 6.022×10^{24}
d) 6.022×10^{25}
3. Which of the following compounds has a relative formula mass $\left(M_{r}\right)$ of 58.5?
a) NaCl
b) KCl
c) CaCl_{2}
d) MgCl_{2}
4. Fill in the blanks in the table below which shows the Mr and the masses of 1 mole for a range of compounds.

Compound	Relative formula mass $\left(\mathrm{M}_{r}\right)$	Mass of 1 mole/g
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$		
Calcium hydroxide - $\mathrm{Ca}(\mathrm{OH})_{2}$		
Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$		
Ammonia $\left(\mathrm{NH}_{3}\right)$		

5. Fill in the gaps to complete the sentences below:

The standard used to measure the masses of atoms is \qquad .

The number of particles in one mole of a substance is \qquad .
6. Calculate the relative formula mass (Mr) and the mass of 1 mole of nitric acid (HNO_{3}).
7. Glucose is a sugar molecule with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
a. What is the mass of 1 mole of glucose?
b. How many glucose molecules are present in 180 g of glucose?
8. One mole of oxygen gas $\left(O_{2}\right)$ contains how many oxygen atoms?
9. Explain why 12-C is used as the standard for measuring the relative masses of atoms.
10. Calculate the number of molecules in 0.5 moles of $\mathrm{H}_{2} \mathrm{O}$
11. Calculate the number of molecules in 20 moles of nitrogen gas (N2).
12. Determine the number of carbon atoms in 3 moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O} 6\right)$.
13. Calculate the number of hydrogen atoms in 2 moles of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Answers

1. What is the relative atomic mass $\left(A_{r}\right)$ of carbon?
a) 6
b) 12
c) 14
d) 16

Answer: b) 12
2. Avogadro's number is:
a) 6.022×10^{22}
b) 6.022×10^{23}
c) 6.022×10^{24}
d) 6.022×10^{25}

Answer: b) $6.022 \times 10^{2^{3}}$
3. Which of the following compounds has a relative formula mass $\left(M_{r}\right)$ of 58.5?
a) NaCl
b) KCl
c) CaCl_{2}
d) MgCl_{2}

Answer: a) NaCl
4. Fill in the blanks in the table below which shows the Mr and the masses of 1 mole for a range of compounds.

Compound	Relative formula mass (Mr)	Mass of 1 mole/g
Carbon dioxide $\left(\mathrm{CO}_{2}\right)$	44	44
Calcium hydroxide - $\mathrm{Ca}(\mathrm{OH})_{2}$	74	74
Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	98	98
Ammonia $\left(\mathrm{NH}_{3}\right)$	17	17

5. Fill in the gaps to complete the sentences below:

The standard used to measure the masses of atoms is \qquad .

The number of particles in one mole of a substance is \qquad .

Answers: ${ }^{12} \mathrm{C}$ - the carbon 12 isotope, 6.022×10^{23} or simply 6×10^{23}
6. Calculate the relative formula mass (Mr) and the mass of 1 mole of nitric acid (HNO_{3}).

Answer: $M_{r}=63$, mass of 1 mole of nitric acid $=63 \mathrm{~g}$
7. Glucose is a sugar molecule with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
a. What is the mass of 1 mole of glucose?

Answer: 180g
b. How many glucose molecules are present in 180 g of glucose?

Answer: Avogadro's number of molecules, 6.022×10^{23}
8. One mole of oxygen gas $\left(\mathrm{O}_{2}\right)$ contains how many oxygen atoms?

Answer: 1 oxygen molecule contains 2 oxygen atoms
or
10 oxygen molecules contains 20 oxygen atoms
or
6.022×10^{23} oxygen molecules contains $2 \times 6 \times 10^{23}$ oxygen atoms or 2 moles of oxygen atoms
9. Explain why 12-C is used as the standard for measuring the relative masses of atoms.

Answer: Carbon-12 is used as the standard because it is a stable isotope and provides a convenient scale for measuring atomic masses. The relative atomic mass www.science-revision.co.uk
scale is based on assigning 12 exactly to the mass of a carbon-12 atom, allowing for a consistent comparison of masses of different atoms.
10. Calculate the number of molecules in 0.5 moles of $\mathrm{H}_{2} \mathrm{O}$

Answer:

Number of molecules $=$ number of moles \times Avogadro's number
$=0.5 \times 6.022 \times 10^{23}$
$=3.011 \times 10^{23}$ molecules
11. Calculate the number of molecules in 20 moles of nitrogen gas (N2).
Answer:
Number of molecules $=$ number of moles \times Avogadro's number
$=20 \times 6.022 \times 10^{23}$
$=1.204 \times 10^{24}$ molecules
$=1.204 \times 10^{24}$ molecules
12. Determine the number of carbon atoms in 3 moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O} 6\right)$.

Answer: 1 mole of glucose contains 6.022×10^{23} molecules of glucose

Each molecule of glucose contains 6 carbon atoms
Number of carbon atoms in 1 mole of glucose $=6 \times 6.022 \times 10^{23}$
Number of carbon atoms in 3 moles of glucose $=3 \times 6 \times 6.022 \times 10^{23}$

$$
=1.08 \times 10^{25}
$$

13. Calculate the number of hydrogen atoms in 2 moles of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Answer:

1 mole of water contains 6.022×10^{23} molecules

Each molecule of water contains 2 hydrogen atoms
Number of hydrogen atoms in 1 mole of water $=2 \times 6.022 \times 10^{23}$
Number of hydrogen atoms in 2 moles of water $=2 \times\left(2 \times 6.022 \times 10^{23}\right)$
$=4 \times 6.022 \times 10^{23}$
$=2.408 \times 10^{24}$ hydrogen atoms

