

Answer all the questions below.

- 1. What is the relative atomic mass (A_r) of carbon?
- a) 6 b) 12 c) 14 d) 16
- 2. Avogadro's number is:
- a) 6.022×10^{22} b) 6.022×10^{23} c) 6.022×10^{24} d) 6.022×10^{25}
- 3. Which of the following compounds has a relative formula mass (M_r) of 58.5?
- a) NaCl b) KCl c) CaCl₂ d) MgCl₂
- 4. Fill in the blanks in the table below which shows the Mr and the masses of 1 mole for a range of compounds.

Compound	Relative formula mass (M _r)	Mass of 1 mole/g
Carbon dioxide (CO2)		
Calcium hydroxide -		
Ca(OH)2		
Sulfuric acid (H ₂ SO ₄)		
Ammonia (NH3)		

5. Fill in the gaps to complete the sentences below:

The standard used to measure the masses of atoms is _____.

The number of particles in one mole of a substance is _____.

- 6. Calculate the relative formula mass (Mr) and the mass of 1 mole of nitric acid (HNO_3) .
- 7. Glucose is a sugar molecule with the formula $C_6H_{12}O_6$
- a. What is the mass of 1 mole of glucose?
- b. How many glucose molecules are present in 180g of glucose?
- 8. One mole of oxygen gas (O_2) contains how many oxygen atoms?
- 9. Explain why 12–C is used as the standard for measuring the relative masses of atoms.
- 10. Calculate the number of molecules in 0.5 moles of H_2O
- 11. Calculate the number of molecules in 20 moles of nitrogen gas (N2).
- 12. Determine the number of carbon atoms in 3 moles of glucose ($C_6H_{12}O6$).
- 13. Calculate the number of hydrogen atoms in 2 moles of water (H_2O) .

www.science-revision.co.uk

<u>Answers</u>

1. What is the relative atomic mass (A_r) of carbon?

a) 6 b) 12 c) 14 d) 16

Answer: b) 12

2. Avogadro's number is:

a) 6.022×10^{22} b) 6.022×10^{23} c) 6.022×10^{24} d) 6.022×10^{25}

Answer: b) $6.022 \times 10^{2^3}$

3. Which of the following compounds has a relative formula mass (M_r) of 58.5?

a) NaCl b) KCl c) CaCl₂ d) MgCl₂

Answer: a) NaCl

4. Fill in the blanks in the table below which shows the Mr and the masses of 1 mole for a range of compounds.

Compound	Relative formula mass (Mr)	Mass of 1 mole/g
Carbon dioxide (CO2)	44	44
Calcium hydroxide -	74	74
Ca(OH)2		
Sulfuric acid (H ₂ SO ₄)	98	98
Ammonia (NH3)	17	17

5. Fill in the gaps to complete the sentences below:

The standard used to measure the masses of atoms is _____.

www.science-revision.co.uk

The number of particles in one mole of a substance is _____

Answers: ${}^{12}C$ - the carbon 12 isotope, 6.022 x 10²³ or simply 6 x 10²³

6. Calculate the relative formula mass (Mr) and the mass of 1 mole of nitric acid (HNO_3) .

Answer: $M_r = 63$, mass of 1 mole of nitric acid=63g

- 7. Glucose is a sugar molecule with the formula $C_6H_{12}O_6$
- a. What is the mass of 1 mole of glucose?

Answer: 180g

b. How many glucose molecules are present in 180g of glucose?

Answer: Avogadro's number of molecules, 6.022×10^{23}

8. One mole of oxygen gas (O_2) contains how many oxygen atoms?

Answer: 1 oxygen molecule contains 2 oxygen atoms

or

10 oxygen molecules contains 20 oxygen atoms

or

6.022 x 10^{23} oxygen molecules contains 2 x 6 x 10^{23} oxygen atoms or 2 moles of oxygen atoms

9. Explain why 12–C is used as the standard for measuring the relative masses of atoms.

Answer: Carbon–12 is used as the standard because it is a stable isotope and provides a convenient scale for measuring atomic masses. The relative atomic mass www.science-revision.co.uk

scale is based on assigning 12 exactly to the mass of a carbon–12 atom, allowing for a consistent comparison of masses of different atoms.

10. Calculate the number of molecules in 0.5 moles of H_2O

Answer:

Number of molecules = number of moles × Avogadro's number

- = 0.5 × 6.022×10²³
- $= 3.011 \times 10^{23}$ molecules
- 11. Calculate the number of molecules in 20 moles of nitrogen gas (N2).

Answer:

Number of molecules = number of moles × Avogadro's number

= 20 × 6.022×10²³

 $= 1.204 \times 10^{24}$ molecules

12. Determine the number of carbon atoms in 3 moles of glucose ($C_6H_{12}O6$).

Answer: 1 mole of glucose contains 6.022×1023 molecules of glucose

www.science-revision.co.uk

Each molecule of glucose contains 6 carbon atoms

Number of carbon atoms in 1 mole of glucose = $6 \times 6.022 \times 10^{23}$

Number of carbon atoms in 3 moles of glucose = $3 \times 6 \times 6.022 \times 10^{23}$

 $= 1.08 \times 10^{25}$

13. Calculate the number of hydrogen atoms in 2 moles of water (H_2O).

Answer:

1 mole of water contains 6.022×1023 molecules

Each molecule of water contains 2 hydrogen atoms

Number of hydrogen atoms in 1 mole of water = $2 \times 6.022 \times 10^{23}$

Number of hydrogen atoms in 2 moles of water = $2 \times (2 \times 6.022 \times 10^{23})$

= 4 × 6.022×10²³

= 2.408×10^{24} hydrogen atoms